Department of Biosciences

Lesson Plan - B. Sc. I Year (July 2017 - March 2018)

Subject - Chemistry - I **Paper : Physical Chemistry**

Teacher - Prof. Deepanshu Pandey Topic Unit 1 A. Mathematical Concept : Unit 1 Logarithm relations (rules & types) Unit 1 Use of log table and antilog table in calculation Unit 1 Curve sketching (Straigth line and linear graphs), Calculation of slopes

Day/Lecture

1

2 3

4

Unit

5	Unit 1	Differentiation of functions like Kx,sin x, log x
6	Unit 1	Multiplication and division in differentiation
7	Unit 1	maxima and minima
8	Unit 1	partial differentiation, Integration of some useful/ relevent functions
9	Unit 1	Factorials
10	Unit 1	Probability
11	Unit 1	Revision of chapter after completion of unit
12	Unit 1	B. Gaseous States and Molecular Velocitites :
13	Unit 1	Critical Phenomenon: PV isotherm of ideal gases
14	Unit 1	Andrew's experiment
15	Unit 1	Continuity of state
16	Unit 1	Isotherms of van der waal's equation
17	Unit 1	relationship between critical constants and vander waals constants
18	Unit 1	Root mean square, average & most probable velocitites
19	Unit 1	Qualitative discussion of the Maxwell's distribution of molecular velocities
20	Unit 1	collision numbers, mean free path and collision diameter
21	Unit 2	A. Liquid States : Intermolecular forces , structure of liquids, Liquid crystals
22	Unit 2	Difference between liquid crystal,solid & liquid
23	Unit 2	classification, structure of nematics and cholestric phases

23	Unit 2	classification, subclufe of nematics and cholestice phases
24	Unit 2	Thermography, & seven segment cell
25	Unit 2	B. Solid State : Defination of space lattice, Unit cell
26		Laws of crystallography : (a) Law of constancy of interfacial angles,
27	Unit 2	(b) law of rationality of indices (c) law of symmetry
28	Unit 2	Symmetry elements in crystal, ionic solid structures, Radius Ratio effect
29	Unit 2	Coordination number, limitation of radius rule lattice defects
30	Unit 2	Revision of chapter after completion of unit
31	Unit 3	Chemical Kinetics : Chemical kinetics and its scope, rate of a reaction
32	Unit 3	Factors affecting rate : Conc, temp., solvent,light,catalyst,pressure
33		Dependence of rate on concentration,
34	Unit 3	Mathematical characteristic of simple chemical reaction: Zero order, First order, Second, Pseudo
35	Unit 3	half life and mean life, Determination of the order of reaction
36	Unit 3	Differential method, half life method
37	Unit 3	Determination of the order of reaction by integration method
38	Unit 3	study of chemical kinetics by polarimetry
39	Unit 3	study of chemical kinetics by spectrophotometery
40	Unit 3	Effect of temperature on rate of reaction
41	Unit 3	Arrhenius equation, Concept of activation energy
42	Unit 3	Simple collision theory, transition state theory
43	Unit 3	Revision of chapter after completion of unit
44	Unit 4	Radioactivity and Nuclear Chemistry : Natural and artificial radioactivity
45	Unit 4	radioactive radiations, detection and measurmentof radioactivity
46	Unit 4	Group displacement law of soddy
47	Unit 4	radioactive disintegration, nuclear reaction : nuclear fussion & nuclear fission
48	Unit 4	half life period, isotopes, isobars and isomers
49	Unit 4	application of radiochemistry
50	Unit 4	Revision of chapter after completion of unit
51	Unit 5	A. Chemical Equilibrium: Law of mass action, Equilibrium constant
52		Le chatelier's Principles
53	Unit 5	B. Colloidal Solutions : Classification, lyophilic and lyophobic colloids
54		
55	Unit 5	Properties : electrical, coagulation
56	Unit 5	Hardy- Schulze rule, Gold number
57	Unit 5	emulsions, gels and sols
58	Unit 5	application of colloids
59	Unit 5	Revision of chapter after completion of unit
60		

		Mahamaia Daniit Singh Callege of Duchasianal Spiences Indone					
	Maharaja Ranjit Singh College of Professional Sciences, Indore						
	Department of Biosciences						
	Lesson Plan - B. Sc. I Year (July 2017 - March 2018)						
	Subject - Chemistry - II Paper : Inorganic Chemistry						
	-	Teacher - Prof. Deepanshu Pandey					
Day/Lecture	Unit	Торіс					
1	Unit 1	(a) Atomic Structure : Dual Nature of matter, idea of de Broglie matter waves					
2	Unit 1	Heisenberg uncertainity principle, atomic orbital					
3	Unit 1	Schrodinger wave equation, Significance of \overline{Y} and \overline{Y}					
4	Unit 1	quantum numbers, radial and angular wave functions					
5	Unit 1	probability distribution curves, shapes of s,p,d, orbitals					
6		Aufbau and pauli exclusion principles, Hund's multiplicity rule					
7	Unit 1	Electronic configuration of the elements, effective nulcear charge					
8	Unit 1	(b) Periodic Properties : Atomic and ionic radii, ionization energy					
9	Unit 1	electron affinity, electronegativity- defination, methods of determination or evaluation					
10	Unit 1	treands in periodic table and applications in predicting and explaing chemical behaviuor					
11	Unit 1	Revision after the completion of the unit.					
12	Unit 2	(a) Chemical Bonding Part I: Covalent Bond- Valence bond theory and its limitations					
13		directional characteristic of covalent bond					
14		various types of hybridization and shapes of simple inorganic molecules and ions					
15		Valence shell electron pair repulsion (VSEPR) theory to NH3					
16	Unit 2	Valence shell electron pair repulsion (VSEPR) theory to H3O,SF4,ClF3 and H2O					
17		MO theory, Homonuclear and heteronuclear (CO and NO)4 diatomic molecules					
18		multicenter bonding in elctron deficient molecules					
19	Unit 2	bond strength and bond energy					
20	Unit 3	(a) Chemical Bonding Part II : Ionic Solids : Ionic structures, radius ratio effect					
21							
22		lattice defects, semi conductors, lattice energy					
23		Born Haber cycle,					
24		solvation energy & solubility of ionic solids					
25		polarizing power and polarisability of ions					
26		Fajan's rule, metallic bond-free electron, valence bond					
27		Band theories					
28		(b) Weak Interaction- Hydrogen bonding, van der waals forces					
29		Chemistry of Noble Gases: chemical properties of the noble gases					
30		chemistry of xenon					
31		structure and bonding in xenon compounds					
32		1.S-Block Elements : Comparative study Li and Mg					
33	Unit 4	diagonal relationships, slient features of hydrides, solvation and complexation					
34	Unit 4	tnedencies including their function in biosystemsan introduction to alkyls and aryls					
35	Unit 4	2.P-Block Elements I : Comparative study Be and Al					
36	Unit 4	diagonal relationship of groups 13-17 elements					
37	Unit 4	Compounds like hydrides, oxides					
38	Unit 4	oxyacids of groups 13-16					
39	Unit 4	halide of groups 13-16					
40	Unit 5	p-Block Elements part II: Hydrides of boron-diborane and higher boranes					
41	Unit 5	Hydrides of boron-diborane and higher boranes					
42	Unit 5	borazine borohydrides					
43	Unit 5	Fullerenes, Fluorocarbons					
44	Unit 5	silicates (structural principle)					
45	Unit 5	tetrasulphur tetranitride					
46	Unit 5	Basic properties of haolgens					
47	Unit 5	Interhalogens and polyhalides					
48	Unit 5	Revision after the completion of the unit.					
49							

Department of Biosciences

Lesson Plan - B. Sc. I Year (July 2017 - March 2018)

Subject - Chemistry - III Paper :Organic Chemistry

Teacher - Prof. Deepanshu Pandey

Day/Lecture	Unit	Teacher - Proi. Deepanshu Pandey Topic
1		Structure and Bonding : Hybridization
2	Unit 1	Bond lengths and bond angles, bond energy
3	Unit 1	localized and delocalized chemical bond
4		inclusion compounds, clatherates
5		charge transfer complexes
6	Unit 1	resonance, hyperconjugation
7	Unit 1	inductive, electromeric, mesomeric and steric effect
8	Unit 1	Mechanism of Organic Reaction: homolytic and heterolytic bond fission
9		Types of reagents- electrophiles and nucleophiles
10	Unit 1	Types of organic reaction, energy consideration
11	Unit 1	Methods of determination of reaction mechanism(active intermediate products)
12		isotopes effects, kinetics and stereochemical studies
13		Revision on completion of the unit
13		Alkanes and cycloalkanes: IUPAC nomenclature of branched and unbranched alkanes
15		classification of alkanes, isomerism in alkanes
16		methods of formation (Wurtz rxn, Kobe Rxn, Corey House Rxn, Decarboxylation)
10		physical and chemical reaction of alkanes
17		conformation of alkanes
10		mechanism of free radical halogenation of alkanes
20		cycloalkanes-nomenclature, methods of formation,
20		chemical reaction, Baeyer strain theory and its limitation
21		Theory of strainless rings
22		The case of cyclopropane ring : Banana bonds
23		conformation of cycloalkanes
24		Revision on completion of the unit
23		
20		Alkene, Cycloalkenes, Dienes : Nomenclature of alkenes methods of formation - mechanism of dehydration of alcohols and dehydrogenation of alkyl halides
27		ragioselectivity in alcohol dehydration
28		The saytzeff rule
30		Hofmann elimination
31		physical properties and relative satbilities of alkenes
31	Unit 3	Chemical reaction of alkenes- mechanism involved in hydrogenation
33		electrophilic and free radical addition
33		Markownikoff's rule
35		hydroboration- oxidation, oxymercuration reduction
36		Epoxidation, ozonolysis
37		polymerization of alkenes
38		substitution of allylic and vinylic positions
39		application of ethylene and propene
40		Methods of formation, conformation and chemical reactions of cycloalkanes
41		Nomenclature and classification of dienes: isolated, conjugated and cumulated dienes
42	Unit 3	structure of allenes and butadiene
43		methods of formation
44		polymerisation
45		Chemical reaction- 1,2 and 1,4 addition
46		Diels- Alder reaction
47		Revision on completion of the unit
48	Unit 4	Alkynes and Alkyl Halides : Nomenclature, structure and bonding of alkynes
49	Unit 4	Methods of formation, chemcial reactions
50	Unit 4	acidity of alkynes, Mechanism of electroplilic and nucleophilic addition reaction
51	Unit 4	hydroboration oxidation, metal- ammonia reduction- oxidation
52	Unit 4	polymerization of alkynes
53	Unit 4	Nomenclature and classification of alkyl halides
54	Unit 4	methods of formation, chemical reactions

55	Unit 4	Mechanism of nucleophilic substitution reaction of alkyl halides
56	Unit 4	SN 1 and SN 2 reaction with energy profile diagrams
57	Unit 4	Elimination reaction
58	Unit 4	Polyhalogen compounds : methods of preperation
59	Unit 4	properties of chloroform and carbon tetrachloride
60	Unit 4	Revision on completion of the unit
61	Unit 5	Stereochemistry of Organic compounds : Concept of isomerism
62	Unit 5	types of isomerism
63	Unit 5	optical isomerism, elements of symmetry
64	Unit 5	moleculare chirality
65	Unit 5	enantionmers, stereogenic centre
66	Unit 5	optical activity, properties of enantiomers
67	Unit 5	chiral and achiral molecules with two stereogenic centres
68	Unit 5	diastereomers, threo and erthro enantiomers
69	Unit 5	inversion, retention and racemization
70	Unit 5	Relative and absolute configuration, sequence rule
71		D & L and R & S systems of nomenclature
72	Unit 5	Geometrical isomerism - determination of configuration of geometric isomers
73	Unit 5	E & Z system of nomenclature
74	Unit 5	geometric isomerism in oximes and alicyclic compounds
75	Unit 5	Revision on completion of the unit

Department of Biosciences

Lesson Plan - B. Sc. I Year (July 2017 - March 2018)

Subject - Chemistry Practical

Teacher - Prof. Deepanshu Pandey

Day/Lecture	Unit	Торіс
1		Physical Chemistry : An introduction
		(A) Any one experiment :
2		(i) Determination of melting point
3		(ii) Determination of boiling point
4		(iii) Weighing and preparation of solution
		(B) Any one experiment :
5		(i) Determination of surface tension/percentage composition of given liquid mixture using surface tension method
6		(ii) Determination of viscocity/ percentage composition of given liquid mixture using viscocity method.
7		Inorganic Chemistry : An introdution
8 to 18		(i) Inorganic mixture analysis
		Mixture analysis for 2 cation and 2 anions
19 to 20		(ii) Separation of cations by paper chromatography
		Organic Chemistry (Any two)
21		(i) Crystallization
22		(ii)Sublimation
23 to 25		(iii) Detection of elements
26 to 32		(iv) Identification of functional group

[Maharaja Ranjit Singh College of Professional Sciences, Indore
		Department of Chemical Science
		•
		Lesson Plan - B.Sc. III sem (July 2017 - Dec 2017)
		Subject - Chemistry Paper I(Chemistry)
		Teacher - Prof. Seema Shintre
Day/Lecture	Unit	Торіс
	1	Arenes and Aromaticity
1		Structure of Benzene, molecular formula and kekule structure.
2		Stability and carbon-carbon bond lengths of benzene, resonance structure.
3		MO picture, Aromaticity, The Huckel rule.
4		Aromatic electrophilic substitution, mechanism of nitration
5		mechanism of halogenation, sulphonation
6		mercuration and Fridel-crafts reaction and energy profile diagram.
		Aryl Halide
7		Methods of formation and reactions of aryl halide
8		Mechanism of nucleophilic aromatic substitution, synthesis and uses of DDT
9		Synthesis and uses of BHC and Freon.
	2	(a)Alcohols: classification and nomenclature
10		Monohydric alcohol: nomenclature, methods of formation by reduction of aldehyde, ketones
11		Carboxilic acid and esters, acidic nature
12		reaction of alcohols
13		Dihydric alcohol: Nomecluture, methods of formation, chemical reactions of vicinal glycols
14		Oxidative cleavage and pinacol-pinacolone rearrangement
15		Trihydric alcohols- Nomenclature and methods of formation
16		Chemical reaction of glycerol
		(b) Phenols
17		Nomenclature, structure and methods of formation
18		Acidic character, comparative acidic strength of alcohols and phenols
10		
19		Stabilization of phenoxide ion by resonance, acylation and carboxilation mechanism of Fries rearrangement
20		Gatterman synthesis, Hauben-Hoesch reaction
21		Lederer-Manasse reaction and Reimer-Tiemann reaction.
	3	Chemistry of elements of I transition series:
22	-	Characteristics properties of d-block elements
23		Properties of the elements of the first transition series
24		binary compounds such as carbides, sulphides
25		binary compounds such as Oxides
26		complexes illustrating relative stability of their oxidation states
27		co-ordination number and geometry
21		Chemistry of elements of II and III transition series:
28		General characteristics comparative study of II and III transition series: ionic radii, Oxidation states
29		Magnetic behavior, Spectral properties
30		Stereochemistry
50	4	Co-ordination compounds
31	4	IUPAC Nomencluture , isomerism
31		
		EAN concept, Chelates VBT of transition metal complexes and its limitation
33		
34		Crystal field theory, Crystal field stabilization energy
35		chemical series, limitation of CFT
26		Thermochemistry:Standard state , standard enthalpy of formation
36		Hess's law of heat summation and its application
37		Heat of reaction at constant pressure and constant volume
38		Enthalpy of neutralization
39		Second law of thermodynamics, Carnot cycle
40	_	Carnot cycle efficiency, Carnot theoram, Thermodynamic scale of temperature.
	5	Thermodynamics: concept of entropy
41		entropy, entropy as a function of P &T
42		entropy change in physical change, Clausius inequality

43	entropy as criteria of spontaneity and equilibrium, mixing of gases
44	entropy change in ideal gases
45	Third law of thermodynamics: Nernst heat theorem, statement and concept of residual etropy
46	evaluation of absolute entropy from heat capacity data, Gibbs and Helmholtz function
47	Gibbs function and Helmholtz function as a thermodynamic quantities
48	A and G as a criteria for thermodynamic equilibrium and spontaneity, their advantage over entropy change
49	relative variation of G&A with P,V,T
50	Buffer: Mechanism of buffer action, Henderson-Hazel equation
51	Hydrolysis of salts

	Ν	Iaharaja Ranjit Singh College of Professional Sciences, Indore				
		Department of Chemical Sciences				
	Lesson Plan - B.Sc. III Sem (July 2017-Dec-2017)					
		Subject - Chemistry Practical				
		Teacher - Prof. Seema Shintre				
Day/Lecture	Unit					
Duj/Lecture	eme	Inorganic Chemistry				
1		Calibration of the fractional weights, pipettes and burettes				
2		Preparation of standard solutions. Dilution of 0.1M to 0.01 M solutions				
		Qualitative analysis: Volumetric analysis				
3	а	Determination of acetic acid in commercial vinager using NaOH.				
4	b	Determination of alkali content- antacid tablet using HCl.				
5	c	Estimation of calcium content in chalk as calcium oxalate by permagnatometry.				
6	d	Estimation of hardness of water by EDTA.				
		Complex compound preparation:				
7	1	Diaquabis(methyl acetoacetato) nickel (II)				
8	2	Diaquabis(methyl acetoacetato) Cobalt (II)				
9	3	Bis (methyl acetoacetato) copper (II) monohydrate				
10	4	Potassium chlorochromate(IV)				
11	5	Tetraaminecopper(II) sulphate monohydrate				
12	6	Hexaaminenickel(II) chloride				
		Organic chemistry				
		Thin layer chromatography				
		Determination of Rf values and identification of organic compounds				
13	а	Seperation og green leaf pigments(spinach leaves may be used)				
14	b	Preparation and seperation of 2,4- dinitrophenylhydrazones of acetone, 2-butanone, hexane-2, and				
		3-one using toluene and light petroleum (40:6)				
15	c	Seperation of a mixture of dyes using cyclohexane and ethylacetate.(8:5:1.5)				
		Paper chromatography				
		Determination of Rf values and identification of organic compounds				
16	а	Seperation of mixture of phenylalanine and glycine, alanine and asparic acid.spray reagent ninhydrin				
17	b	Seperation of mixture of DL-alanine, glycine and L-lucine using n-butanol:acetic acid :water(4:1:5)				
18	c	Seperation of monosaccharides- a mixture of D-galactose and D-fructose.				

	M	aharaja Ranjit Singh College of Professional Sciences, Indore
		Department of Chemical Science
		*
		Lesson Plan - B.Sc. IV sem (Jan 2018 - June 2018)
		Subject - Chemistry Paper I (Chemistry)
		Teacher - Prof. Seema Shintre
Day/Lecture	Unit	Торіс
	1	Phase Equilibrium
1		Statement and the meaning of terms: phase, component and the degree of freedom
2		Thermodynamic derivation of the Gibbs phase rule
3		One component system: water system, CO ₂ system
4		Sulphur system
5		Two component system: solid liquid equilibrium, simple eutectic system: Bi-Cd system
6		Pb-Ag system and desilverisation of lead
		Solid solution
7		Type B system: Zn-Mg system
8		NaCl-H2O system, copper sulphate water system
		Liquid liquid mixture
9		Raoult's law and Henry's law
10		Ideal and non-ideal solutions
11		Azeotrops: HCl-H2O and ethanol water system
		Partial miscible liquids
12		Phenol-water, trimethylamine-water and nicotine-water system
13		Lower and upper consolute temperature, steam distillation
14		Nernst distribution law: thermodynamic derivation, application.
	2	Electrochemistry-I
15		Electrical transport, conduction in metal and electrolyte solutions
16		Resistance, conductance, Specific and equivalent conductivity
17		Measurment of equivalent conductance, effect of dilution on conductivity
18		Migration of ions and Kohlrausch law and application
19		Arrhenius theory of electrolyte dissociation and its limitations
20		Weak and strong electrolytes, Ostwald's dilution law
21		Debye Huckel theoryad DHO equation
22		Transport number, Hittorf method
23		Moving boundary method
24		Types of reversible electrodes: Gas metal ion, metal-metal ion, metal- insoluble salt anion and redox
		electrode
25		electrode reactions, Nernst equation
26		derivation of cell EMF and single electrode potential
27		Standard hydrogen electrode , standard electrode potential
28	ļ	EMF of cell and its measurments, computation of cell EMF
29		calculation of thermodynamic quantities of cell reaction (dG,dH,K)
30		solubility product and activity coefficient
31		potentiometric and conductometric titration
32		defination of pH and pK, determination of pH using hydrogen, quinhydrone and glass electrode by
33		potentiometric methods
	3	Aldehydes and Ketones
34		Nomenclature, structure of the carbonyl group
35		synthesis of aldehydes and ketones - synthesis of aldehyde from acid chlorides
36		synthesis of aldehyde and ketone from 1,3 dithianes
37		synthesis of ketones from nitrilles and carboxylic acids
38		physical properties
39		mechanism of reactions- Aldol condensation and benzoin condensation
40		Perkin reaction and Knoevengel condensations

41		condensation with ammonia nd its derivatives
42		Wittig reaction and Mannich reaction
43		Use of acetals as protecting groups, oxidation of aldehydes
44		Baeyer-Villiger oxidation of ketones, cannizaro reaction
45		MPV, Clemmenson , Wolf Kischner reaction
46		LiAlH4 and NaBH4 reduction, Helogination
		Carboxylic acids
47		Nomenclature ,structure and bonding
48		physical properties and acidity of carboxylic acids
49		effect of substituents on acid strength
50		Preparation and reactions of carboxylic acids
51		HVZ reaction, synthesis of acid chloride, esters and amides
52		reduction of carboxylic acids, Mechanism of decarboxylation
	4	Carboxylic acids derivatives:
53		structure and nomenclature of acid chlorides, esters, amides and acid anhydrides
54		physical properties
55		interconversion of acid derivative by nucleophilic acyl substitution
56		preparation of carboxilic acid derivatives, chemical reactions
57		Mechanism of esterification and hydrolysis
58		Co-ordination Chemistry: MOT diagram for tetrahedral, square planner complex
59		MOT diagram for Octahedral complexes
60		Green Chemistry: principle, 12 tenets
61		description with examples
	5	(a) Chemistry of Lanthanide elements
62		electronic structure, oxidation states
63		ionic radii and lanthanide contraction
64		complex formation occurrence and isolation
65		lanthanide compounds
		(b) Chemistry of Actinides
66		General features and chemistry of actinides
67		chemistry of Np, Pu and Am from U, Similarities between lanthanides and actinides

		Maharaja Ranjit Singh College of Professional Sciences, Indore			
	Department of Chemical Sciences				
	Lesson Plan - B.Sc. IV Sem (Jan 2018 - June 2018)				
		Subject - Chemistry Practical			
		Teacher - Prof. Seema Shintre			
Day/Lecture	Unit	Торіс			
		Organic Chemistry: Qualitative analysis			
1		Identification of an organic compound through the functional group analysis, determination of			
		melting point and preparation of suitable derivatives.			
		Physical Chemistry			
2	а	Determination of transition temperature of given substance by thermometric, dialometric method.			
	b	Phase equilibrium:			
3	1	To study the effect of solute on the critical solution temperature of two partially miscible liquid.			
4	2	To construct the phase diagram of two component by cooling curve method.			
	с	Thermochemistry			
5	1	To determine the enthalpy of neutralization of weak acid/weak base verses strong acid/ strong base			
		and determine the enthalpy of ionization of the weak acid/base.			
		Inorganic Chemistry: Quantitative volumetric analysis			
6	1	Estimation of ferrous and ferric by dichromate method.			
7	2	Estimation of copper using thiosulphate.			

Maharaja Ranjit Singh College of Professional Sciences, Indore				
Department of Chemical Science				
Lesson Plan - B.Sc. V Sem Chemistry (July 2017 - Dec 2017)				
Subject - Chemistry				
	Teacher - Dr. Lal Kumar			
Day/Lecture	Unit	Торіс		
1	Ι	Organic Compounds of Nitrogen:		
2	Ι	Preparation, properties and chemical reactions of nitroalkanes and nitroarenes.		
3	Ι	Mechanism of nucleophilic substitution in nitroarenes and their reduction in acidic neutral and alkaline media, picric acids.		
4	Ι	Halonitroarenes; structure and nomenclature, and their activity.		
5	Ι	Amines structure, and nomenclature, physical properties and stereochemistry, separation of mixture of primary, secondary and tertiary amines.		
6	Ι	Structural features affecting basicity of amines. Amine salts as phase transfer catalysts.		
7	Ι	Preparation of alkyl and aryl amines (reduction of nitro compounds, nitriles), reductive amination of aldehydic and ketonic compounds,		
8	Ι	Gabriel – phthalamide reaction, Hoffmann bromamide reaction, Reaction of amines, electrophilic aromatic substitution in aryl amines, reaction of amines with nitrous acid synthetic transformation of aryl diazonium salts, azo coupling.		
9	II	A. Carbohydrates-I		
10	II	Classification and nomenclature		
11	II	monosaccharides		
12	II	Mechanism of Osazone formation		
13	II	Inter conversion of glucose into fructose		
14	II	Ascending and descending series in aldose		
15	II	Configuration of monosaccharides		
16	II	Stereo isomers of erythro and theo sugars		
17	II	Conversion of glucose into mannose		
18	II	Glycosides, determination of the size of the ring of monosachharides		
19	II	Ring structure of D(+) glucose		
20	II	Mechanism of mutarotation		
21	II	Structure of ribose and deoxyribose		
22	II	B. Carbohydrates-II		

23		
	II	Disaccharides introductory idea of maltose, sucrose, and lactose (excluding structure)
		Polysaccharides introductory idea of starch and
24	II	cellulose(Excluding Structure)
25	II	Reducing and non-reducing sugars
26	III	A. Photochemistry
		Electromagnetic radiation, range of different regions of the
27	III	spectrum
28	III	different expression units for energy
29	III	wavelength and frequency
30	III	interaction of radiation with matter
31	III	difference between thermal and photochemical process
32	III	Law of photochemistry
33	III	Grothus Draper Law
34	III	Stark-Einstein Law
35	III	Beer-Lambert Law
36	III	Electronic Transition
37		Jablonski Diagram depicting various quantum yield
38	III	B. UV Spectroscopy
39	III	Electronic Excitation
40	III	Elementary Idea of instrument used
40	III	· · · · · · · · · · · · · · · · · · ·
41		Application to organic molecules
42	TTT	Woodward-Fieser rule for determining lemda max of enes, polyenes and alpha,beta-unsaturated carbonyl compounds
42	III	polyclics and alpha, beta-unsaturated carbonyl compounds
43	IV	A. Bioinorganic Chemistry-I
1.4	IV	Essential and trace element in biological processes
44		
	TX 7	
44	IV	Metalloporphyrins with special reference to haemoglobin and myoglobin
45		Metalloporphyrins with special reference to haemoglobin and myoglobin
	IV IV	Metalloporphyrins with special reference to haemoglobin and
45		Metalloporphyrins with special reference to haemoglobin and myoglobinBiological role of alkali and alkaline earth metal ions with
45 46	IV	 Metalloporphyrins with special reference to haemoglobin and myoglobin Biological role of alkali and alkaline earth metal ions with special reference of Ca2+.
45 46 47	IV IV	Metalloporphyrins with special reference to haemoglobin and myoglobinBiological role of alkali and alkaline earth metal ions with special reference of Ca2+.B. Bioinorganic Chemistry-II
45 46 47 48	IV IV IV	 Metalloporphyrins with special reference to haemoglobin and myoglobin Biological role of alkali and alkaline earth metal ions with special reference of Ca2+. B. Bioinorganic Chemistry-II Role of metal ions in biological process, nitrogen fixation
45 46 47 48 49	IV IV IV IV	 Metalloporphyrins with special reference to haemoglobin and myoglobin Biological role of alkali and alkaline earth metal ions with special reference of Ca2+. B. Bioinorganic Chemistry-II Role of metal ions in biological process, nitrogen fixation oxygen uptake proteins, cytochromes and ferredoxins.
45 46 47 48 49 50	IV IV IV IV V	 Metalloporphyrins with special reference to haemoglobin and myoglobin Biological role of alkali and alkaline earth metal ions with special reference of Ca2+. B. Bioinorganic Chemistry-II Role of metal ions in biological process, nitrogen fixation oxygen uptake proteins, cytochromes and ferredoxins. A. Hard and Soft Acids and Bases(HSAB)
45 46 47 48 49 50 51	IV IV IV IV V V	 Metalloporphyrins with special reference to haemoglobin and myoglobin Biological role of alkali and alkaline earth metal ions with special reference of Ca2+. Bioinorganic Chemistry-II Role of metal ions in biological process, nitrogen fixation oxygen uptake proteins, cytochromes and ferredoxins. A. Hard and Soft Acids and Bases(HSAB) Classification of acids and bases as hard and soft Pearson's HSAB Concept, Symbiosis
45 46 47 48 49 50 51 52 53	IV IV IV IV V V V V	 Metalloporphyrins with special reference to haemoglobin and myoglobin Biological role of alkali and alkaline earth metal ions with special reference of Ca2+. B. Bioinorganic Chemistry-II Role of metal ions in biological process, nitrogen fixation oxygen uptake proteins, cytochromes and ferredoxins. A. Hard and Soft Acids and Bases(HSAB) Classification of acids and bases as hard and soft Pearson's HSAB Concept, Symbiosis B. Analytical Chemistry
45 46 47 48 49 50 51 52	IV IV IV V V V	 Metalloporphyrins with special reference to haemoglobin and myoglobin Biological role of alkali and alkaline earth metal ions with special reference of Ca2+. Bioinorganic Chemistry-II Role of metal ions in biological process, nitrogen fixation oxygen uptake proteins, cytochromes and ferredoxins. A. Hard and Soft Acids and Bases(HSAB) Classification of acids and bases as hard and soft Pearson's HSAB Concept, Symbiosis
45 46 47 48 49 50 51 51 52 53	IV IV IV IV V V V V	 Metalloporphyrins with special reference to haemoglobin and myoglobin Biological role of alkali and alkaline earth metal ions with special reference of Ca2+. B. Bioinorganic Chemistry-II Role of metal ions in biological process, nitrogen fixation oxygen uptake proteins, cytochromes and ferredoxins. A. Hard and Soft Acids and Bases(HSAB) Classification of acids and bases as hard and soft Pearson's HSAB Concept, Symbiosis B. Analytical Chemistry Errors, their classification, minimisation of errors, precision

57	V	C. Inorganic Polymer
58	V	Intoduction, scope of inorganic polymers
59	V	special characteristics, Classification and their applications
60	V	Structure and nature of bonding in Silicones and triphosphonitrilic chloride

Department of Chemical Science Lesson Plan - B.Sc. V Sem Chemistry (July 2017 - Dec 2017)

Subject - Chemistry Practical

Teacher - Dr. Lal Kumar			
Day/Lecture	Unit	Торіс	
1	Ι	Inorganic Chemistry	
2	Ι	To separate and identify inorganic mixture having five radicals with at least one interfering radical	
3	Ι	To separate and identify inorganic mixture having five radicals with at least one interfering radical	
4	Ι	To separate and identify inorganic mixture having five radicals with at least one interfering radical	
5	Ι	Gravimetric Analysis	
6	Ι	To estimate barium as a barium sulphate	
7	II	Organic Chemistry Preparation	
8	II	A. Acetylation	
9	II	B. Benzoylation	
10	II	C. meta-dinitrobenzene	
11	II	D. Picric Acid	

	Mah	araja Ranjit Singh College of Professional Sciences, Indore	
		Department of Chemical Science	
		Lesson Plan - B.Sc. VI Sem Chemistry (Jan 2018 - June 2018)	
Subject - Chemistry			
Teacher - Dr. Lal Kumar			
Day/Lecture	Unit	Topic	
1	I	A. Amino Acids	
2	I	Classification of Amino Acid	
3	I	Structure, stereochemistry of amino acids	
4	I	Acid base behaviour, isoelectric point	
5	I	General methods of preparation and properties of alpha-amino acids	
6	I	Proteins and peptides. Introduction to peptides linkage,	
0	1		
7	Ι	End group analysis, classification, properties and structure of proteins (primary, secondary and	
		tertiary).	
8	Ι	B. Nucleic acids: Introduction of nucleic acids and	
0	т	constituents of nucleic acid,	
9	I	Ribonucleosides, Ribonucleotides,	
10	I	Double helical structure of DNA	
11	I	C. Elementary idea of Fats, Oils & Detergents:	
12	I	Natural fats, edible and industrial oils of vegetable origin, common fatty acids, glycerides,	
13	Ι	Hydrogenation of unsaturated oils,	
14	Ι	Saponification value, iodine value, acid value.	
15	II	A. Organometallic Chemistry:	
16	II	Synthesis; structure and bonding in metal carbonyl complexes,	
17	Π	Metal olefin complexes and metal alkyne complexes.	
18	Π	Oxidative addition reactions.	
19	Π	B. Organometallic Compounds:	
20	Π	Organomagnesium Compound -	
21	Π	Grignard Reagent and Organolithium Compounds,	
22	Π	Methods of preparation, structure and synthetic applications.	
23	III	Magnetic properties of transition metal complexes:	
24	III	Magnetic moment	
25	III	(spin only and with L-S coupling),	
26	III	orbital contribution magnetic moment.	
27	III	B. Electronic spectra of transition metal complexes:	
28	III	Spectroscopic ground and excited states,	
29	III	Types of electronic transitions,	
30	III	Selection rules for d-d transitions,	
31	III	Orgel-energy level diagram for d1 to d9 states.	
32	III	C. Water Analysis:	
33	III	Hardness, types of hardness,	
34	III	Acidity and alkalinity, BOD, COD and DO.	
35	IV	A. Infrared spectroscopy :	
36	IV	Statement of the Born-Oppenheimer approximation,	
37	IV	Rotational spectrum of diatomic molecules.	
38	IV	Energy levels of a rigid rotator,	
39	IV	Selection rule, intensity of absorption bands,	
40	IV	Maxwell- Boltzmann distribution and	
40	IV	Population of energy levels.	
41 42	IV	B. Energy levels of simple harmonic oscillator,	
+∠		selection rules,	
43 44	IV IV	Pure vibrational spectrum,	

46	IV	Degree of freedom and
47	IV	Modes of vibration,
48	IV	vibrational frequencies of different functional groups.
49	IV	C. Raman Spectroscopy:
50	IV	Concept of polarizability,
51	IV	Pure rotational and Pure vibrational Raman spectra of diatomic molecules.
52	IV	Selection rules, application of Raman spectrum.
53	V	A. NMR Spectroscopy
54	V	Principle and Instrumentation,
55	V	NMR active nucleus,
56	V	Chemical shift, spin-spin coupling,
57	V	Spectrum of ethanol and ethanal.
58	V	B. Surface Phenomena and Catalysis:
59	V	Adsorption of gases and liquids on solid adsorbent,
60	V	Freundlich and Langmuir adsorption isotherms,
61	V	Determination of surface area,
62	V	Characteristics and mechanism of heterogeneous catalysis.

Maharaja F	Maharaja Ranjit Singh College of Professional Sciences, Indore		
	Department of Chemical Science		
	Lesson Plan - B.Sc. VI Sem Chemistry (Jan 2018 - June 2018)		
	Subject - Chemistry Practical		
	Teacher - Dr. Lal Kumar		
	Day/Lecture Unit Topic		
	1	Ι	Organic Chemistry
	2	Ι	To separate and identify organic mixture having two solid also prepare their derivatives
	3	Ι	To separate and identify organic mixture having two solid also prepare their derivatives
	4	Ι	To separate and identify organic mixture having two solid also prepare their derivatives
	5	Ι	To separate and identify organic mixture having two solid also prepare their derivatives
	6	II	Physical Instrumentation
	7	II	A. Job's Method
	8	II	B. Mole-ratio method
	9	III	Inorganic Chemistry
	10	III	Effluent Analysis: to identify cations and anions in given water samples.
	11	III	Water Analysis: To determine the dissolve oxygen in given water sample in ppm units.
	12	III	To determine the hardness of water samples.